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To the memory of D. Coxeter

Preface

This paper is a revised Russian translation of a paper by the same authors (see the reference below) and is
devoted to a nontraditional approach to the representation theory of the symmetric groups (and, more generally,
to the representation theory of Coxeter and local groups). The translation was prepared for the Russian edition
of the book W. Fulton, Young Tableaux. With Applications to Representation Theory and Geometry, Cambridge
Univ. Press, Cambridge, 1997, which, hopefully, will appear sooner or later. In the editor’s preface to the Russian
translation of the book it is explained what is the drawback of the conventional approach to the representation
theory of the symmetric groups: it does not take into account important properties of these groups, namely,
that they are Coxeter groups, and that they form an inductive chain, which implies that the theory must be
constructed inductively. A direct consequence of these drawbacks is, in particular, that Young diagrams and
tableaux appear ad hoc; there presence in the theory is justified only after the proof of the branching theorem.

The theory described in this paper is intended to correct these defects. The first attempt in this direction was
the paper [30] by the first author, in which it was proved that if we assume that the branching graph of irreducible
complex representations of the symmetric groups is distributive, then it must be the Young graph. As it turned
out, this a priori assumption is superfluous — the distributivity follows directly from the fact that Sn is a
Coxeter group if we involve remarkable generators of the Gelfand–Tsetlin subalgebra of the group algebra C[Sn],
namely, the Young1–Jucys2–Murphy generators (see [19, 30]). But all numerous later expositions, including the
very good book by Fulton, followed the classical version of the theory, which goes back to Frobenius, Schur, and
Young; although some nice simplifications were made, such as von Neumann’s lemma, Weyl’s lemma, the notion
of tabloids, etc., but the general scheme of the construction of the theory remained the same.3 The reader can
find references to the books on the representation theory of the symmetric groups in the monograph by James
and Kerber [18], in the book by James [17], which was translated into Russian, and in earlier textbooks.

The key point of our approach, which explains the appearance of Young tableaux as well as the general idea of
our method, is that the points of the spectrum of the Gelfand–Tsetlin algebra with respect to the Young–Jucys–
Murphy generators are so-called content vectors, i.e., integer vectors in Rn that satisfy certain simple conditions,
which follow from the Coxeter relations, and the coordinates of these integer vectors are the so-called contents
of the boxes of Young tableaux (see Sec. 6); since the content vector uniquely determines a Young tableau, it
follows that the points of the spectrum are precisely Young tableaux. The corresponding eigenvectors determine a
basis in each representation, and the set of vectors corresponding to tableaux with a given diagram form a basis
of the irreducible representation of Sn (the Young–Gelfand–Tsetlin basis). Thus the correspondence “diagrams”
↔ “irreducible representations” obtains a natural (one might say, spectral) explanation.
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Our approach not only helps to improve the exposition of classical results, it also allows us to consider
representations of more general groups and algebras, for example, “local groups and algebras” in the sense of
[30], provided that the group is finite or the algebra is finite-dimensional. An attempt to apply this method to
other groups and, in particular, to the Coxeter groups of series B–C–D, is contained in [12] and [28].

Recently died a distinguished and original mathematician Donald Coxeter (1907–2003), to whom modern
mathematics owes important and deep ideas and very beautiful geometric and group constructions. This revised
version of the paper is dedicated to the memory of D. Coxeter.

A. Vershik

0. Introduction

The aim of this paper is to present a new, simple and direct, approach to the representation theory of the
permutation group Sn.

Basically, there are two ways to construct irreducible complex representations of Sn. The first one is essentially
based on the representation theory of the full linear group GL(N) and the duality between Sn and GL(N) in
the space

C
N ⊗ C

N ⊗ · · · ⊗ C
N

︸ ︷︷ ︸

n times

,

which is called the Schur–Weyl duality (see [1]). The Schur functions, which are characters of GL(N), play the
key role in this approach. A description of the characters of Sn that is based on the Schur functions and is close
to the original construction by Frobenius can be found, for example, in [23].

The other way, usually attributed to Young with later contributions by von Neumann and Weyl, is based
on the combinatorics of tableaux. In this approach, an irreducible representation (sometimes called a Specht
module) arises as the unique common component of two simple representations induced from one-dimensional
representations (the identity representation and the sign representation) of the same Young subgroup. It is this
irreducible component that one associates with the partition (diagram) corresponding to the Young subgroup.
Since the decomposition of induced representations into irreducible ones is rather complicated and nonconstruc-
tive, the correspondence “diagrams” ↔ “irreducible representations” also looks rather unnatural. This approach
is traditional, and one can find it in almost all textbooks and monographs on the subject, for example, in one
of the last books [18]. Under this approach, considerable efforts are required to obtain any explicit formula for
characters of Sn.

Both these ways are important as well as indirect; they rest upon deep and nontrivial auxiliary constructions.
There is a natural question: whether one can arrive at the main combinatorial objects of the theory (diagrams,
tableaux, etc.) in a more direct and natural fashion?

We believe that the representation theory of the symmetric groups must satisfy the following three conditions:

(1) The symmetric groups form a natural chain (Sn−1 is embedded into Sn), and the representation theory of
these groups should be constructed inductively with respect to these embeddings, that is, the representation
theory of Sn should rely on the representation theory of Sn−1, n = 1, 2, . . . .

(2) The combinatorics of Young diagrams and Young tableaux, which reflects the branching rule for the restric-
tion

Sn ↓ Sn−1,

should be introduced as a natural auxiliary element of the construction rather than ad hoc; it should be
deduced from the intrinsic structure of the symmetric groups. Only in this case the branching rule (which is
one of the main theorems of the theory) appears naturally and not as a final corollary of the whole theory.

(3) The symmetric groups are Coxeter groups, and the methods of their representation theory should apply to
all classical series of Coxeter groups.

In this paper, we suggest a new approach, which satisfies the above principles and makes the whole theory
more natural and simple. The following notions are very important for our approach:

(1) Gelfand–Tsetlin algebra and Gelfand–Tsetlin basis (GZ-algebra and GZ-basis);
(2) Young–Jucys–Murphy (YJM-) elements;
(3) algebras with a local system of generators (ALSG) as a general context for the theory.
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The Gelfand–Tsetlin basis was defined by I. M. Gelfand and M. L. Tsetlin in the fifties [5, 6] for the unitary
and orthogonal groups. The general notion of GZ-algebra for inductive limits of algebras can be introduced in
the same way for an arbitrary inductive limit of semisimple algebras (this was done, for example, in [3]). For
the general definition of Gelfand–Tsetlin algebras and Young–Jucys–Murphy generators, see also [34].

The notion of algebras or groups with a local system of generators and local relations (in short, local algebras
or groups) generalizes Coxeter groups, braid groups, Hecke algebras, locally free algebras, etc. (see [30, 31]).
This notion allows one to define an inductive process of constructing representations, which we apply here to
the symmetric groups.

The special generators of the GZ-algebra of the symmetric group Sn were essentially introduced in papers
by A. Young and then rediscovered independently by A.-A. A. Jucys [19] and G. E. Murphy [24]. These YJM-
generators are as follows:

Xi = (1 i) + (2 i) + · · ·+ (i− 1 i), i = 1, 2, . . ., n;

X0 = 0, X1 = (1, 2), . . .

There exist an invariant way to define them (see below), which applies to a very general class of ALSG, in
particular, to all Coxeter groups. It is very important that these generators do not lie in the centers of the
corresponding group algebras, but nevertheless generate the GZ-algebra, which contains all these centers.

The complexity of the symmetric group (compared, for example, to the full linear group) lies in the fact that
the Coxeter relations

sisi+1si = si+1sisi+1

for the generators si of Sk are not commutation relations. Moreover, there is no sufficiently large commutative
subgroup of Sk that could play the role of a Cartan subgroup. However, our approach in some way resembles
Cartan’s highest weight theory, with the role of a Cartan subgroup played by the commutative GZ-subalgebra in
C[Sn]. The Young–Jucys–Murphy generators of this subalgebra diagonalize simultaneously in any representation
of Sn, and the whole representation theory of Sn is encoded in their spectrum. The problem is, therefore, to
describe this spectrum, that is, to understand what eigenvalues of the YJM-elements can appear and which of
them appear in a given irreducible representation.

This problem is similar to the description of the dominant weights of a reductive group. We solve it using
induction on n and elementary analysis of the commutation relation

siXi + 1 = Xi+1si , i = 1, 2, . . . , n− 1, (0.1)

between the YJM-elements and the Coxeter generators si. In a sense, the algebra H(2) (the degenerate affine
Hecke algebra of order 2) generated by si and two commuting elements Xi and Xi+1 subject to (0.1) plays the
same role in our paper as the group gl(2) plays in the representation theory of reductive groups.

Our exposition is organized as follows. We define the branching scheme of irreducible representations of the
symmetric groups Sn and prove that it is a graph (rather than a multigraph), i.e., the multiplicities of irreducible
representations of Sn−1 in the restrictions of irreducible representations of Sn to Sn−1 are simple. Then we study a
maximal commutative subalgebra of the group algebra — the Gelfand–Tsetlin algebra, or the GZ-algebra, whose
diagonalization in each irreducible representation determines a linear basis of this representation, and show that
the spectrum of this algebra is the set of integer vectors in Rn determined by simple conditions described in
Sec. 5 (so-called content vectors). A vector satisfying these conditions is in turn just the vector consisting of the
“contents” of the boxes of a Young tableau (such a vector uniquely determines the tableau), and thus we arrive
at the main conclusion that the bases of all irreducible complex representations of Sn are indexed by Young
tableaux. There is an equivalence relation on content vectors: two vectors are equivalent if they belong to the
same irreducible representation. We prove that this equivalence of the corresponding tableaux means that they
have the same Young diagram, and this completes the proof of the main theorem — the branching theorem: the
branching graph (Bratteli diagram) of irreducible representations of the symmetric groups Sn coincides with the
graph of Young diagrams (the Young graph).

Two facts allow us to realize this plan: first, we choose the so-called Young–Jucys–Murphy generators of
the Gelfand–Tsetlin algebra and consider the spectrum with respect to these generators; and, second, we can
explicitly describe the representations of the degenerate affine Hecke algebra H(2), which plays the role of the
“increment” in the inductive step from the group algebra C[Sn−1] to the group algebra C[Sn]. This step can be
realized because of the role that is played by the Coxeter generators of Sn and the Coxeter relations between
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them: they directly give conditions on elements of the spectrum of the GZ-algebra (content vectors). One of the
main advantages of our construction of the representation theory of the symmetric groups (and other series of
Coxeter groups) is that we obtain the branching rule simultaneously with the description of representations, and
introduce Young diagrams and tableaux using only the analysis of the spectrum of the GZ-algebra. One may say
that our plan also realizes a noncommutative version of Fourier analysis on the symmetric groups, in which the
set of Young tableaux appears in a natural way as the spectrum of a dual object to Sn, and the set of diagrams
gives the list of representations.

As an application of these results, we derive the classical Young formulas for the action of the Coxeter
generators si of Sn and a new proof of the Murnaghan–Nakayama rule for the characters of Sn. The final step
in the proof of the Young formulas is the same as in [24]; in fact, the derivation of the Young formulas was
Murphy’s motivation for introducing the elements Xi. The novelty of our approach compared to [24] is that
we do not assume any knowledge of the representation theory of Sn and, on the contrary, construct the theory
starting from simple commutation relations.4

The first attempt to develop a new approach to the representation theory of the symmetric groups was made in
the papers [30, 31], where the notion of algebras with a local system of generators (ALSG) was introduced. The
branching rule and Young’s orthogonal form were deduced in [30] from the Coxeter relation for the generators of
Sn and the assumption that the branching graph (see below) of Sn is the Hasse diagram of a distributive lattice.
The approach presented in this paper does not require any additional assumptions.

Our scheme can be applied to some other ALSG, and first of all to the Coxeter groups of B–C–D series and
to wreath products of the symmetric groups with some finite groups. All these generalizations will be considered
elsewhere.

We do not attempt to give a complete bibliography on the subject. Proper analogs of the Young–Jucys–
Murphy elements for the infinite symmetric group S∞ proved to be an extremely powerful tool in infinite-
dimensional representation theory; see [8, 9, 10, 11]. For the representation theory of the infinite symmetric
group, see also [20, 32, 3, 21]. In the series of papers [30, 31, 32], the first author develops a new approach to
the representation theory of Sn in connection with asymptotic problems.

There are numerous other applications of the YJM-elements to classical representation theory (see, for exam-
ple, [15]; we learned about this important preprint after our paper was completed). The Young–Jucys–Murphy
elements arise naturally in connection with higher Capelli identities (see [27]). In [13, 16], these elements were
considered in the context of the theory of degenerate affine Hecke algebras. Young–Jucys–Murphy elements for
Coxeter groups were defined in [26, 28]; among earlier papers, we mention [7].

In what follows, the reader is supposed to be familiar only with elementary facts from the abstract repre-
sentation theory of finite groups. We will not use any facts from the representation theory of the symmetric
groups.

A short announcement of our results was made in [4].

1. Gelfand-Tsetlin algebra and Gelfand–Tsetlin basis

Consider an inductive chain of finite groups

{1} = G(0) ⊂ G(1) ⊂ G(2) ⊂ . . . . (1.1)

By G(n)∧ denote the set of equivalence classes of irreducible complex representations of the group G(n). By
definition, the branching graph (more precisely, the branching multigraph), also called the Bratteli diagram, of
this chain is the following directed graph. Its vertices are the elements of the set (disjoint union)

⋃

n≥0

G(n)∧ .

4From the viewpoint of the classical representation theory of Sn, it may seem that using the whole inductive family, S1 ⊂ · · · ⊂
Sn−1 ⊂ Sn to construct the representation theory of the unique group Sn is somewhat arbitrary (there are many such families,

although they are isomorphic). But it is this “noninvariance” that allows us to relate the theory to Young diagrams and tableaux;
without it there is no branching theorem, no GZ-bases, no RSK correspondence, etc. Moreover, without fixing an inductive family,

the correspondence “irreducible representations” ↔ “Young diagrams” loses its precise sense and remains only an arbitrary act of
constructing the Specht modules. Of course, other inductive families (for example, S2 ⊂ S4 ⊂ . . . with periodic embeddings) lead

to other branching theorems and other bases.
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Denote by V λ the G(n)-module corresponding to a representation λ ∈ G(n)∧. Two vertices µ ∈ G(n − 1)∧ and
λ ∈ G(n)∧ are joined by k directed edges (from µ to λ) if

k = dimHomG(n−1)(V µ, V λ) ,

that is, if k is the multiplicity of µ in the restriction of λ to the group G(n − 1). We call the set G(n)∧ the nth
level of the branching graph. We write

µ ↗ λ

if µ and λ are connected by an edge in the branching graph; and

µ ⊂ λ ,

where µ ∈ G(k)∧, λ ∈ G(n)∧, and k ≤ n, if the multiplicity of µ in the restriction of λ to G(k) is nonzero. In
other words, µ ⊂ λ if there is a path from µ to λ in the branching graph. Denote by ∅ the unique element of
G(0)∧. The same definition of the branching graph applies to any chain

M(0) ⊂ M(1) ⊂ M(2) ⊂ . . .

of finite-dimensional semisimple algebras (see [3] and references therein). If the multiplicities of all restrictions
are equal 0 or 1, then this diagram is a graph (and not multigraph); in this case one says that the multiplicities
are simple or the branching is simple. It is well known, and we will prove this in the next section, that this is the
case for the symmetric groups G(n) = Sn (see also, e.g., [18, 17]). If the branching is simple, the decomposition

V λ =
⊕

µ∈G(n−1)∧, µ↗λ

V µ

into the sum of irreducible G(n − 1)-modules is canonical. By induction, we obtain a canonical decomposition
of the module V λ into irreducible G(0)-modules (i.e., one-dimensional subspaces)

V λ =
⊕

T

VT

indexed by all possible chains
T = λ0 ↗ λ1 ↗ . . . ↗ λn, (1.2)

where λi ∈ G(i)∧ and λn = λ. Such chains are increasing paths from ∅ to λ in the branching graph (or
multigraph).

Choosing a unit (with respect to the G(n)-invariant inner product (· , ·) in V λ) vector vT in each one-
dimensional space VT , we obtain a basis {vT } in the module V λ, which is called the Gelfand–Tsetlin basis
(GZ–basis). In [5, 6], such a basis was defined for representations of SO(n) and U(n); we use the same term in
the general situation (see [3]). By the definition of vT ,

C[G(i)] · vT , i = 1, 2, . . . , n, (1.3)

is the irreducible G(i)-module V λi . It is also clear that vT is the unique (up to a scalar factor) vector with this
property.

By Z(n) denote the center of C[G(n)]. Let GZ(n) ⊂ C[G(n)] be the algebra generated by the subalgebras

Z(1), Z(2), . . . , Z(n)

of C[G(n)]. It is readily seen that the algebra GZ(n) is commutative. It is called the Gelfand–Tsetlin subalgebra
(GZ-algebra) of the inductive family of (group) algebras. Recall the following fundamental isomorphism:

C[G(n)] =
⊕

λ∈G(n)∧

End (V λ) (1.4)

(the sum is over all equivalence classes of irreducible complex representations).
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Proposition 1.1. The algebra GZ(n) is the algebra of all operators diagonal in the Gelfand–Tsetlin basis. In
particular, it is a maximal commutative subalgebra of C[G(n)].

Proof. Denote by PT ∈ GZ(n) the product

Pλ1Pλ2 . . .Pλ, Pλi ∈ Z(i) ,

of the central idempotents corresponding to the representations λ1, λ2, . . . , λ, respectively. Clearly, PT is a
projection onto VT . Hence GZ(n) contains the algebra of operators diagonal in the basis {vT }, which is a
maximal commutative subalgebra of C[G(n)]. Since GZ(n) is commutative, the proposition follows. �
Remark 1.2. Note that by the above proposition, any vector from the Gelfand–Tsetlin basis in any irreducible
representation of G(n) is uniquely (up to a scalar factor) determined by the eigenvalues of the elements of GZ(n)
on this vector.

Remark 1.3. For an arbitrary inductive family of semisimple algebras, the GZ-subalgebra is a maximal com-
mutative subalgebra if and only if the branching graph has no multiple edges.

The following criterion of simple branching uses the important notion of centralizer. Let M be a semisimple
finite-dimensional C-algebra, and let N be its subalgebra; the centralizer Z(M, N) of this pair is the subalgebra
of all elements of M that commute with N .

Proposition 1.4. The following two conditions are equivalent.
(1) The restriction of any finite-dimensional irreducible complex representation of the algebra M to N has

simple multiplicities.
(2) The centralizer Z(M, N) is commutative.

Proof. Let V µ and V λ be the finite-dimensional spaces of irreducible representations of the algebras N and
M , respectively. Consider the M -module HomN(V µ, V λ). It is an irreducible Z(M, N)-module; thus it is
one-dimensional if the centralizer is commutative.

Conversely, if there exists an irreducible representation of the centralizer Z(M, N) of dimension more than
one, then the multiplicity of the restriction of some representation of M to N is also greater than one. �

In the next section, we will apply this criterion to the group algebras of the symmetric groups.

2. Young–Jucys–Murphy elements

From now on we consider the case
G(n) = Sn.

First let us prove that the spectrum of the restriction of an irreducible representation of Sn to Sn−1 is simple
(i.e., there are no multiplicities). The proof reproduces the idea of the classical I. M. Gelfand’s criterion saying
when a pair of groups — a Lie group and its subgroup — is what was later called a Gelfand pair (this means
that the subalgebra consisting of those elements of the group algebra that are biinvariant with respect to the
subgroup is commutative). We present this beautiful proof (I was reminded of it by E. Vinberg), because it is
of very general character and uses the specific features of the symmetric group as little as possible.

Recall (see Proposition 1.4) that the spectrum of the restriction of a representation of a group to a subgroup
is simple if and only if the centralizer of the group algebra of the subgroup in the group algebra of the whole
group is commutative.

Theorem 2.1. The centralizer Z(n − 1, 1) ≡ Z(C[Sn], C[Sn−1]) of the subalgebra C[Sn−1] in C[Sn] is commu-
tative.

We begin with the following assertion.

Lemma 2.2. Every element g of the symmetric group Sn is conjugate to the inverse element g−1, i.e., there is
h ∈ Sn such that g−1 = hgh−1; moreover, the element h can be chosen in the subgroup Sn−1.

Proof. Indeed, it is obvious that for every k (in particular, for k = n − 1), every permutation from Sn−1 is
conjugate to its inverse. Now let g ∈ Sn; take a permutation h ∈ Sn−1 ⊂ Sn that conjugates in Sn−1 the
permutation g′ ∈ Sn−1 induced on 1, . . . , n − 1 by g (i.e., g′ = png, where pn is the virtual projection; see the
definition in Sec. 7) and its inverse g′−1; that is, we take h ∈ Sn−1 such that g′−1 = hg′h−1. Then h, regarded
as an element of Sn with fixed point n, realizes the desired conjugation: g−1 = hgh−1. Moreover, we can choose
h to be an element of second order with fixed point n. �

Recall a simple but important fact from the theory of involutive algebras.

5476



Lemma 2.3. A real algebra with involution ∗ is commutative if and only if all its elements are self-conjugate,
i.e, if the involution is the identity automorphism.

Proof. Let B be a ∗-algebra over R, i.e., an algebra with a linear anti-automorphism of second order all elements
of which are self-conjugate. Then any two elements commute: ab = a∗b∗ = (ba)∗ = ba, and the algebra is
commutative. The converse is just as obvious: if the algebra is commutative, then the product of self-conjugate
elements is also self-conjugate: ab = ba = b∗a∗ = (ab)∗, and since these elements generate the whole algebra, all
elements of the algebra are self-conjugate. �

For involutive algebras over C the statement is slightly different: an algebra over C is commutative if and only
if the involution is the complex conjugation with respect to every realization of the algebra as the complexification
of a real algebra.

Let us continue the proof of Theorem 2.1.

Proof of Theorem 2.1. As we have seen, it suffices to check that every real element of the centralizer Z(n−1, 1) ⊂
C[Sn] is self-conjugate.

Let
f =

∑

i

cigi, ci ∈ R,

be an arbitrary real element of Z(n − 1, 1); the above expansion is unique, because {g, g ∈ Sn} is a basis in
C[Sn]. Since f commutes with every h from Sn−1, it follows from the uniqueness of the expansion f =

∑

i cigi

that is does not change if we apply an inner automorphism f → hfh−1; as we have proved above, we can choose
h = hi with higih

−1
i = g−1

i ; then the summand cigi turns into cig
−1
i . Thus, along with every summand cigi, the

decomposition also contains the summand cig
−1
i , which means that f is a fixed point of the anti-automorphism,

or that f∗ = f . �
The analysis of the whole proof leads to the following statement.

Theorem 2.4. Let A be a finite-dimensional ∗-algebra over R, and let B be its ∗-subalgebra; assume that in
A there is a linear basis G = {gi} closed under the involution (i.e., G∗ = G), and for every i there exists an
orthogonal (b∗ = b−1) element bi ∈ B such that bigibi

∗ = g∗i . Then the centralizer of the subalgebra B in the
algebra A is commutative, and thus the spectrum of the restriction of irreducible representations of the algebra
A to the subalgebra B is simple.

If A and B are the group algebras of a finite group G and its subgroup H ⊂ G, respectively, and the basis
consists of elements of G, then this condition reads as follows: for every g ∈ G, there exist elements h ∈ H and
g′ ∈ G such that h−1g′h = g−1; if we can take g′ = g, then we obtain the above condition.

This criterion in the above form can be applied in many situations. We emphasize that the above proof of
the simplicity of spectrum for the symmetric groups does not use in any way the analysis of representations of
Sn; and the fact itself is the first step towards the spectral analysis of the symmetric groups and is based only
on elementary algebraic properties of the group. Later we will see that the simplicity of spectrum also easily
follows from another fact concerning centralizers.

We will need not only the fact that the centralizer Z(n − 1, 1) is commutative, but also a more detailed
description of this centralizer as well as its relation to the Gelfand–Tsetlin algebra. We will describe the centralizer
and the structure of the Gelfand–Tsetlin algebra with the help of a special basis.

For i = 1, 2, . . . , n, consider the following elements Xi ∈ C[Sn]:

Xi = (1 i) + (2 i) + · · ·+ (i − 1 i)

(in particular, X1 = 0). We will call them the Young–Jucys–Murphy elements (or YJM-elements).
It is clear that

Xi = sum of all transpositions in Si – sum of all transpositions in Si−1, (2.1)

that is, Xi is the difference of an element of Z(i) and an element of Z(i − 1). Therefore Xi ∈ GZ(n) for all
i ≤ n. In particular, the Young–Jucys–Murphy elements commute.

Let A, B, . . . , C be elements or subalgebras of some algebra M ; by 〈A, B, . . . , C〉 denote the subalgebra of M
generated by A, B, . . . , C.
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Theorem 2.5. In the algebra C[Sn], consider its center Z(n) and the center Z(n − 1) of the subalgebra
C[Sn−1] ↪→ C[Sn]. Then

Z(n) ⊂ 〈Z(n − 1), Xn〉.

Proof. Recall that

Xn =
n−1
∑

i=i

(i, n) =
n

∑

i �=j; i,j=1

(i, j) −
n−1
∑

i �=j; i,j=1

(i, j).

The second summand lies in Z(n − 1), hence the first one lies in 〈Z(n − 1), Xn〉. We have

X2
n =

n
∑

i,j=1

(i, n)(j, n) =
n−1
∑

i �=j; i,j=1

(i, j, n) + (n − 1)I.

Therefore the element
∑n−1

i �=j;i,j=1(i, j, n) lies in 〈Z(n − 1), Xn〉. Adding the element

n−1
∑

i �=j �=k; i,j,k=1

(i, j, k)

from Z(n − 1), we obtain the following element from Z(n):

n
∑

i �=j �=k; i,j,k=1

(i, j, k).

Thus we have proved that the indicator of the conjugacy class of cycles of length 3 in Sn also lies in 〈Z(n−1), Xn〉.
Apply induction and consider the general case

Xn ·
n

∑

i1,...,ik−1=1

(i1, . . . , ik−1, n) =
∑

i �=is, s=1,...,n−1

(i, n)(i1, . . . , ik−1, n)

+
∑

i,i1,...,ik−1

(i, i1, . . . , ik−1, n).

Taking the sum of the first summand with the class

n
∑

i,j,i1,...,ik−1=1

(i, j)(i1, . . . , ik−1),

which lies in Z(n − 1), we obtain the conjugacy class in Sn of the product of a cycle of length 2 with a cycle of
length k, i.e., an element from Z(n). Hence the second summand, the class of cycles of length k + 1, also lies in
〈Z(n − 1), Xn〉. Again taking its sum with the element

∑

i,i1,...,ik

(i, i1, . . . , ik−1, ik) ∈ Z(n − 1),

we obtain the conjugacy class of cycles of length k + 1 in Sn.
Thus the classes of all one-cycle5 permutations in Sn lie in 〈Z(n − 1), Xn〉. It remains to apply the classical

theorem saying that the center of the group algebra C[Sn] is generated by multiplicative generators — the classes
of one-cycle permutations. This theorem reduces to the assertion that the power sums

∑n
i=1 xr

i ≡ pr form a
multiplicative basis in the ring of symmetric functions ([23, Chap. 1]). Thus

Z(n) ⊂ 〈Z(n − 1), Xn〉. �

5By one-cycle permutations, we mean permutations with one nontrivial cycle.
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Corollary 2.6. The Gelfand–Tsetlin algebra is generated by the Young–Jucys–Murphy elements:

GZ(n) = 〈X1, X2, . . . , Xn〉.

Proof. By definition,
GZ(n) = 〈Z(1), . . . , Z(n)〉.

Clearly, GZ(2) = C[S2] = 〈X1 = 0, X2〉 = C.
Assume that we have proved that

GZ(n − 1) = 〈X1, . . . , Xn−1〉.

Then we must prove that
GZ(n) = 〈GZ(n − 1), Xn〉.

The inclusion
GZ(n) ⊃ 〈GZ(n − 1), Xn〉

is obvious, hence it suffices to check that

Z(n) ⊂ 〈GZ(n − 1), Xn〉.

But Theorem 2.5 implies
Z(n) ⊂ 〈Z(n − 1), Xn〉 ⊂ 〈GZ(n − 1), Xn〉. �

Remark 2.7. Note that the YJM-elements do not lie in the corresponding centers: Xk �∈ Z(k), k = 1, . . . , n. It
might seem natural to search for a basis of GZ(n) consisting of elements of the centers Z(1), . . . , Z(n). However,
it is a “noncentral” basis that turns out to be useful.

Theorem 2.8. The centralizer Z(n−1, 1) ≡ Z(C[Sn], C[Sn−1]) of the subalgebra C[Sn−1] in C[Sn] is generated
by the center Z(n − 1) of C[Sn−1] and the element Xn:

Z(n − 1, 1) = 〈Z(n − 1), Xn〉.

Proof. A linear basis in the centralizer Z(n − 1, 1) is the union of a linear basis in Z(n − 1) and classes of the
form

∑

(i(1)
1 , . . . , i

(1)
k1−1, n)(i(2)

1 , . . . , i
(2)
k2

) . . . (i(3)
1 , . . . , i

(3)
k3

),

where the sum is taken over distinct indices ils that run over all numbers from 1 to n − 1. But taking the sum
of such classes with the classes

∑

(i(1)
1 , . . . , i

(1)
k1

)(i(2)
1 , . . . , i

(2)
k2

) . . . (i(3)
1 , . . . , i

(3)
k3

)

(the sum is over all indices from 1 to n− 1) from Z(n− 1), as in the proof of Theorem 2.5, we obtain all classes
from Z(n). Hence a linear basis of Z(n − 1, 1) can be obtained as a linear combination of elements of the bases
of Z(n − 1) and Z(n), i.e.,

Z(n − 1, 1) ⊂ 〈Z(n − 1), Z(n)〉.

And since Z(n) ⊂ 〈Z(n − 1), Xn〉 (by Theorem 2.5), the theorem follows. �

Theorem 2.9. The branching of the chain C[S1] ⊂ · · · ⊂ C[Sn] is simple, i.e., the multiplicities of the restrictions
of irreducible representations of C[Sn] to C[Sn−1] equal 0 or 1.

Proof. Since the centralizer Z(n − 1, 1) is commutative (because Z(n − 1, 1) ⊂ 〈Z(n − 1), Xn〉), it suffices to
apply the simplicity criterion from Proposition 1.4. �
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Corollary 2.10. The algebra GZ(n) is a maximal commutative subalgebra of C[Sn]. Thus in each irreducible
representation of Sn, the Gelfand–Tsetlin basis is determined up to scalar factors.

This basis is called the Young basis. A. Young considered it in representations, but could not describe it as a
global basis, since this requires the notions of GZ-algebra and YJM-elements, which were not known then.

The Young basis is a common eigenbasis of the YJM-elements. Let v be a vector of this basis in some
irreducible representation; denote by

α(v) = (a1, . . . , an) ∈ C
n

the eigenvalues of X1, . . . , Xn on v. Let us call the vector α(v) the weight of v. Denote by

Spec (n) = {α(v), v belongs to the Young basis}

the spectrum of the YJM-elements. By Theorem 2.5 and Remark 1.2, a point α(v) ∈ Spec (n) determines v up
to a scalar factor. It follows that

|Spec (n)| =
∑

λ∈S∧
n

dimλ .

In other words, the dimension of the Gelfand–Tsetlin algebra is equal to the sum of the dimensions of all pairwise
nonequivalent irreducible representations.

By the definition of the Young basis, the set Spec (n) is in a natural bijection with the set of all paths (1.2)
in the branching graph. Denote this correspondence by

T �→ α(T ), α �→ Tα .

Denote by vα the vector (unique up to a nonzero scalar factor) of the Young basis corresponding to a weight α.
There is a natural equivalence relation ∼ on Spec (n). Write

α ∼ β, α, β ∈ Spec (n) ,

if vα and vβ belong to the same irreducible Sn-module, or, equivalently, if the paths Tα and Tβ have the same
end. Clearly,

|Spec (n)/ ∼ | = |S∧
n | .

Our plan is to
(1) describe the set Spec (n),
(2) describe the equivalence relation ∼,
(3) calculate the matrix elements in the Young basis,
(4) calculate the characters of irreducible representations.

3. The action of generators and the algebra H(2)

The Coxeter generators
si = (i i + 1), i = 1, . . . , n − 1,

of the group Sn commute except for neighbors. In [30], such generators were called local. Here “locality” is
understood as in physics; it means that remote generators commute and hence do not affect each other. The
locality manifests itself in the following property of the Young basis.

Proposition 3.1. For any vector

vT , T = λ0 ↗ . . . ↗ λn, λi ∈ S∧
i ,

and any k = 1, . . . , n − 1, the vector
sk · vT

is a linear combination of the vectors

vT ′ , T ′ = λ′
0 ↗ . . . ↗ λ′

n, λ′
i ∈ S∧

i ,

5480



such that
λ′

i = λi, i �= k .

In other words, the action of sk affects only the kth level of the branching graph.

Proof. Let i > k. Since sk ∈ Si and the module

C[Si] · vT

is irreducible, we have
C[Si] sk · vT = C[Si] · vT = V λi , (3.1)

where V λi is the irreducible Si-module indexed by λi ∈ S∧
i .

Since sk commutes with Si, (3.1) also holds for all i < k. Now it follows from (1.3) that sk · vT is a linear
combination of the desired vectors. �

In the same way it is easy to show that the coefficients of this linear combination depend only on λk−1, λk, λ′
k,

λk+1 and the choice of the scalar factors in vectors of the Young basis. That is, the action of sk affects only the
kth level and depends only on levels k − 1, k, and k + 1 of the branching graph. More precise formulas are given
in Sec. 4.

We can also easily deduce the above proposition from the obvious relations

siXj = Xjsi, j �= i, i + 1 . (3.2)

The elements si, Xi, and Xi+1 satisfy a more interesting (and well-known) relation

siXi + 1 = Xi+1si , (3.3)

which can obviously be rewritten as
siXisi + si = Xi+1 .

The action of the YJM-elements on the Young basis is also local. It readily follows from (2.1) that if

T = λ0 ↗ . . . ↗ λn

and
α(T ) = (a1, . . . , an),

then ak is the difference of a function of λk and a function of λk−1 for all k.
Denote by H(2) the algebra generated by the elements Y1, Y2, and s subject to the following relations:

s2 = 1, Y1Y2 = Y2Y1, sY1 + 1 = Y2s .

The generator Y2 can be excluded, because Y2 = sY1s + s, so that the algebra H(2) is generated by Y1 and s,
but technically it is more convenient to include Y2 in the list of generators.

This algebra will play the central role in what follows. It is the simplest example of the degenerate affine Hecke
algebra (see below). It follows directly from these relations that irreducible finite-dimensional representations
of this algebra are either one-dimensional or two-dimensional. Indeed, since Y1 and Y2 commute, they have
a common eigenbasis; taking any vector v of this eigenbasis and applying the involution s to v, we obtain an
H(2)-invariant subspace of dimension at most 2. The importance of the algebra H(2) is based on the following
obvious yet useful fact.

Proposition 3.2. The algebra C[Sn] is generated by the algebra C[Sn−1] and the algebra H(2) with generators
Y1 = Xn−1, Y2 = Xn, s = sn, where Xn−1 and Xn are the corresponding YJM-elements and sn = (n − 1, n) is
a Coxeter generator.

Of course, the algebra C[Sn] is generated by the subalgebra C[Sn−1] and one generator sn, but it is taking
into account the superfluous generators Xn−1 and Xn that allows us to use induction: each step from n − 1 to
n reduces to the study of representations of H(2).

Another important property of the Coxeter generators and YJM-elements is that the relations between them
are stable under shifts of indices. In [30], such relations were called stationary.

Remark 3.3. The degenerate affine Hecke algebra H(n) is generated by commuting variables Y1, Y2, . . . , Yn and
Coxeter involutions s1, . . . , sn−1 with relations (3.2), (3.3) (see [16, 13]). If we put Y1 = 0, then the quotient of
H(n) modulo the corresponding ideal is canonically isomorphic to C[Sn].
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4. Irreducible representations of H(2)

As already mentioned in Sec. 3, all irreducible representations of H(2) are at most two-dimensional and have
a vector v such that

Y1v = av, Y2v = bv, a, b ∈ C .

If the vectors v and sv are linearly independent, then the relation

sY1 + 1 = Y2s (4.1)

implies that Y1 and Y2 act in the basis v, sv as follows:

Y1 =
(

a −1
0 b

)

, Y2 =
(

b 1
0 a

)

, s =
(

0 1
1 0

)

.

If b �= a ± 1, then this representation contains one of the two one-dimensional subrepresentations; denote it by
πa,b. If b = a ± 1, then this representation contains the unique one-dimensional subrepresentation

Y1 �→ a, Y1 �→ b, s1 �→ ±1,

in which v and sv are proportional; and, conversely, if v and sv are proportional, then

sv = ±v,

and (4.1) implies
b = a ± 1.

Note that always a �= b, since otherwise the operators πa,b(Yi) cannot be diagonalized and thus such repre-
sentations cannot occur in the action on the Young basis. If a �= b, then the operators πa,b can be diagonalized,
for example, as follows:

Y1 =
(

a 0
0 b

)

, Y2 =
(

b 0
0 a

)

, s =
( 1

b−a
1− 1

(b−a)2

1 1
a−b

)

. (4.2)

Let us formulate our results as a proposition which describes representations in terms of transformations of
weights (i.e., eigenvectors).

Proposition 4.1. Let
α = (a1, . . . , ai, ai+1, . . . , an) ∈ Spec (n) .

Then ai ∈ Z and

(1) ai �= ai+1 for all i;
(2) if ai+1 = ai ± 1, then si · vα = ±vα;
(3) if ai+1 �= ai ± 1, then

α′ = si · α = (a1, . . . , ai+1, ai, . . . , an) ∈ Spec (n)

and α′ ∼ α (see Sec. 2 for the definition of the equivalence relation ∼). Moreover,

vα′ =
(

si −
1

ai+1 − ai

)

vα,

and the elements si, Xi, Xi+1 act in the basis vα, vα′ by formulas (4.2) with Y1 replaced by Xi and Y2

replaced by Xi+1.

Recall that the transpositions si from claim (3) of Proposition 4.1 are Coxeter transpositions. In order
to emphasize their role in the context of this section (as operations on weights α), we call them admissible
transpositions. Admissible transpositions preserve the set Spec (n) and the set Cont (n) defined in the next
section. The two cases of this proposition correspond to the cases of chain and square from Sec. 7.

Note that if ai+1 �= ai ± 1, then in the basis
{

vα, ci(si − diI)vα

}

,

where ci = (ai+1 − ai)−1, di = (1 − c2
i )

−1/2, the matrix of the transposition si is orthogonal:

si =
(

1/r
√

1 − 1/r2
√

1 − 1/r2 −1/r

)

,

where r = ai+1 − ai. In Young’s papers, this difference was called the axial distance; it is the difference of the
contents (see Sec. 5) of the corresponding boxes of Young tableaux.
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5. Main theorems

In this section, we describe the set Spec (n) introduced in Sec. 2 and the equivalence relation ∼. Let us
introduce the set Cont (n) of content vectors of length n.

Definition. We say that α = (a1, . . . , an) is a content vector,

α = (a1, . . . , an) ∈ Cont (n),

if α satisfies the following conditions:

(1) a1 = 0;
(2) {aq − 1, aq + 1} ∩ {a1, . . . , aq−1} �= ∅ for all q > 1 (i.e., if aq > 0, then ai = aq − 1 for some i < q; and if

aq < 0, then ai = aq + 1 for some i < q);
(3) if ap = aq = a for some p < q, then

{a − 1, a + 1} ⊂ {ap+1, . . . , aq−1}

(i.e., between two occurrences of a in a content vector there should also be occurrences of a − 1 and a + 1).

It is clear that
Cont (n) ⊂ Z

n .

Theorem 5.1.
Spec (n) ⊂ Cont (n) . (5.1)

We need the following lemma.

Lemma 5.2. Let α = (a1, . . . , an) and ai = ai+2 = ai+1 − 1 for some i, i.e., α contains a fragment of the form
(a, a + 1, a). Then

α /∈ Spec (n) .

Proof. Let α ∈ Spec (n). By claim (2) of Proposition 4.1,

sivα = vα, si+1vα = −vα ,

i.e., sisi+1sivα = −vα, but si+1sisi+1vα = vα, contradicting the Coxeter relations

sisi+1si = si+1sisi+1 . �

Proof of Theorem 5.1. Let α = (a1, . . . , an) ∈ Spec (n). Since X1 = 0, we have a1 = 0.
Let us verify conditions (2) and (3) by induction on n. The case n = 2 is trivial. Assume now that {an −

1, an + 1} ∩ {a1, . . . , an−1} = ∅. Then the transposition of n − 1 and n is admissible and

(a1, . . . , an−2, an, an−1) ∈ Spec (n) .

Hence (a1, . . . , an−2, an) ∈ Spec (n − 1) and, clearly,

{an − 1, an + 1} ∩ {a1, . . . , an−2} = ∅,

contradicting the induction hypothesis. This proves the necessity of (2).
Assume that ap = an = a for some p < n, and let

a − 1 /∈ {ap+1, . . . , an−1} .

We may assume that p is the largest possible, that is, the number a does not occur between ap and an:

a /∈ {ap+1, . . . , an−1} .
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Then, by the induction hypothesis, the number a + 1 occurs in the set {ap+1, . . . , an−1} at most once. Indeed, if
it occurred at least twice, then, by the induction hypothesis, the number a would also occur. Thus we have two
possibilities: either

(ap, . . . , an) = (a, ∗, . . . , ∗, a) ,

or
(ap, . . . , an) = (a, ∗, . . . , ∗, a + 1, ∗, . . . , ∗, a) ,

where ∗, . . . , ∗ stands for a sequence of numbers different from a − 1, a, a + 1.
In the first case, applying n − p − 1 admissible transpositions, we obtain

α ∼ α′ = (. . . , a, a, . . .) ,

which contradicts claim (1) of Proposition 4.1.
In the second case, the same argument yields

α ∼ α′ = (. . . , a, a + 1, a, . . .) ,

which contradicts Lemma 5.2. �
We will need another equivalence relation. Write

α ≈ β, α, β ∈ C
n ,

if β is an admissible permutation (the product of admissible transpositions) of the entries of α. Now we are
ready for the appearance of Young diagrams and tableaux. Namely, we will see that vectors from Cont (n) are
the content vectors of Young tableaux.

Recall some definitions. Denote by Y the Young graph (see Fig. 1).
By definition, the vertices of Y are Young diagrams, and two vertices ν and η are joined by a directed edge if

and only if ν ⊂ η and η/ν is a single box. In this case we write ν ↗ η. Given a box � ∈ η, the number

c(�) = x-coordinate of �− y-coordinate of �

is called the content of � (see Fig. 2).
By Tab(ν) denote the set of paths in Y from ∅ to ν; such paths are called standard tableaux or Young tableaux.

A convenient way to represent a path T ∈ Tab(ν),

∅ = ν0 ↗ . . . ↗ νn = ν,

is to write the numbers 1, . . . , n in the boxes ν1/ν0, . . . , νn/νn−1 of νn, respectively. Put

Tab(n) =
⋃

|ν|=n

Tab(ν) .

The following proposition can easily be checked.

Proposition 5.3. Let
T = ν0 ↗ . . . ↗ νn ∈ Tab(n) .

The mapping
T �→ (c(ν1/ν0), . . . , c(νn/νn−1))

is a bijection of the set of tableaux Tab(n) and the set of content vectors Cont (n) defined at the beginning of
this section. We have α ≈ β, α, β ∈ Cont (n), if and only if the corresponding paths have the same end, that is,
if and only if they are tableaux with the same diagram.

Proof. The content vector of any standard Young tableau obviously satisfies conditions (1), (2), and (3) of the
definition of a content vector, and these conditions uniquely determine the tableau as a sequence of boxes of the
Young diagram. �

In terms of Young tableaux, admissible transpositions are transpositions of numbers from different rows and
columns.
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Fig. 1. The Young graph.

Fig. 2. Contents of boxes.

Lemma 5.4. Any two Young tableaux T1, T2 ∈ Tab(ν) with diagram ν can be obtained from each other by a
sequence of admissible transpositions. In other words, if α, β ∈ Cont (n) and α ≈ β, then β can be obtained
from α by admissible transpositions.

Proof. Let us show that by admissible transpositions we can transform any Young tableau T ∈ Tab(ν), ν =
(ν1, . . . , νk), to the following tableau with the same diagram (and horizontal monotone numeration):

corresponding to the content vector

α(T ν) = (0, 1, 2, . . ., ν1 − 1,−1, 0, . . . , ν2 − 2,−2,−1, . . .)

from Cont (n). To this end, consider the last box of the last row of ν. Let i be the number written in this box
of T . Transpose i and i + 1, then i + 1 and i + 2, . . . , and, finally, n − 1 and n. Clearly, all these transpositions
are admissible, and we obtain a tableau with the number n written in the last box of the last row. Now repeat
the same procedure for n − 1, n− 2, . . . , 2. �
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Corollary 5.5. If α ∈ Spec (n) and α ≈ β, β ∈ Cont (n), then β ∈ Spec (n) and α ∼ β.

Remark 5.6. Our chain of transpositions from the proof of Lemma 5.4, which connects T and T ν , is minimal
possible in the following sense. Denote by s the permutation that maps T to T ν , i.e., that associates with the
number written in a given box of T the number written in the same box of T ν . Let �(s) be the number of
inversions in s, that is,

�(s) = #{(i, j) ∈ {1, . . . , n} | i < j, s(i) > s(j)} .

It is well known that s can be written as the product of �(s) transpositions si and cannot be written as a shorter
product6 . It is easy to see that our chain contains precisely �(s) admissible transpositions. In other words,
Cont (n) is a “totally geodesic” subset of Zn for the action of Sn. That is, along with any two vectors Cont (n)
contains chains of vectors that realize the minimal path between them in the sense of the word metric with
respect to the Coxeter generators.

In the proof of Lemma 5.4 we used the fact that we can transform every tableau with a given diagram into
any other tableau with the same diagram using only Coxeter transpositions; it is this fact that guaranteed that
vectors of the Young basis with the same diagram lie in the same representation. Thus with each irreducible
representation we can associate the structure of a graph, whose vertices are vectors of the Young basis and edges
are labelled by Coxeter generators and connect pairs of vectors that can be transformed into each other by the
corresponding generator. These graphs generalize the Bruhat graph (order) on the group Sn.

Remark 5.7. The first author (see [2]) introduced the so-called adic transformations on the spaces of paths of
graded graphs; in particular, the Young transformation (automorphism) on the space of infinite tableaux (i.e.,
paths in the Young graph). This transformation sends a tableau to the next tableau in the lexicographic order
on the set of tableaux with a given diagram. Hence any two finite tableaux with the same diagram lie on the
same orbit of the Young automorphism. The interval of the orbit that passes through tableaux with a given
diagram starts from the tableau shown in the above figure (with horizontal monotone numeration) and ends
by the tableau with vertical monotone numeration. But, of course, these orbits are not geodesic, unlike the
above-defined chain of transformations, which constitutes only a part of an orbit.

Recall that the Young graph Y is an infinite Z-graded graph of Young diagrams with obvious grading and set
of edges. The graph consisting of the first n levels is denoted by Yn.

We proceed to the proof of the central theorem of the paper.

Theorem 5.8. The Young graph Y is the branching graph of the symmetric groups; the spectrum of the
Gelfand–Tsetlin algebra GZ(n) is the space of paths in the finite graph Yn, i.e., the space of Young tableaux
with n boxes; we have Spec (n) = Cont (n), where Spec (n) is the spectrum of GZ(n) with respect to the YJM-ge-
nerators X1, . . . , Xn and Cont (n) is the set of content vectors; the corresponding equivalence relations coincide:
∼=≈.

Proof. As we have seen, the set of classes Cont (n)/ ≈ is the set of classes of tableaux with the same diagram.
Hence

#
{

Cont (n)/ ≈
}

= p(n),

where p(n) is the number of partitions of the number n, i.e., the number of diagrams with n boxes. By
Corollary 5.5, each equivalence class in Cont (n)/ ≈ either does not contain elements of the set Spec (n), or is a
subset of some class in Spec (n)/ ∼. But

#
{

Spec (n)/ ∼
}

= #
{

S∧
n

}

= p(n),

because the number of irreducible representations is equal to the number of conjugacy classes, which is again the
number of partitions of n (as the number of cycle types of permutations). Therefore each class of Cont (n)/ ≈
coincides with one of the classes of Spec (n)/ ∼. In other words,

Spec (n) = Cont (n) and ∼=≈ .

Obviously, it follows that the graph Y is the branching graph of the symmetric groups. �
Thus the main theorem is proved. But the above analysis gives much more than the proof of the branching

theorem; in subsequent sections we will use it to obtain an explicit model of representations (Young’s orthogonal
form) and sketch the derivation of the formula for characters.

6Simply because �(sig) = �(g) ± 1 for all i and g ∈ Sn.
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6. Young formulas

Up to now we have been considering vectors vT of the Young basis up to scalar factors. In this section, we
will specify the choice of these factors.

Let us start with the tableau Tλ defined in the proof of Lemma 5.4 (see the figure). Choose any nonzero
vector vT λ corresponding to this tableau.

Now consider a tableau T ∈ Tab(λ) and put

�(T ) = �(s) ,

where s is the permutation that maps Tλ to T . Recall that PT denotes the orthogonal projection onto VT (see
Sec. 1). Put

vT = PT · s · vT λ . (6.1)

By Lemma 5.4, the permutation s can be represented as the product of �(T ) admissible transpositions. Therefore,
by definition (6.1) and formulas (4.2),

s · vT λ = vT +
∑

R∈Tab(λ), �(R)<�(T )

γR vR, (6.2)

where γR are some rational numbers. In particular, assume that T ′ = siT and

�(T ′) > �(T ) .

Let
α(T ) = (a1, . . . , an) ∈ Cont (n)

be the sequence of contents of boxes in T . Then (4.2), (6.1), and (6.2) imply

si · vT = vT ′ +
1

ai+1 − ai
vT . (6.3)

And, again by (5.2),

si · vT ′ =
(

1 − 1
(ai+1 − ai)2

)

vT − 1
ai+1 − ai

vT ′ . (6.4)

This proves the following proposition.

Proposition 6.1. There exists a basis {vT } of V λ in which the Coxeter generators si act according to formulas
(6.3), (6.4). All irreducible representations of Sn are defined over the field Q.

Another way to prove this proposition is to verify directly that these formulas define a representation of Sn

(that is, to verify the Coxeter relations).
The basis used above yields Young’s seminormal form of V λ. If we normalize all vectors vT , we obtain Young’s

orthogonal form of V λ. This form is defined over R. Denote the normalized vectors by the same symbols vT .
Then si acts in the two-dimensional space spanned by vT and vT ′ by an orthogonal matrix. Thus

si =
(

r−1
√

1 − r−2√
1 − r−2 −r−1

)

, (6.5)

where
r = ai+1 − ai .

This number is usually called the axial distance (see [18] and also [30]). If we write the action of the Coxeter
generators si in the basis of standard tableaux, it looks as follows:

• if i and i + 1 are in the same row, then si leaves the tableau T unchanged;
• if i and i + 1 are in the same column, then si multiplies T by −1;
• if i and i + 1 are in distinct rows and columns, then in the two-dimensional space spanned by this tableau

and the tableau (which is also standard) in which the elements i and i + 1 are swapped, si acts according
to (6.5).

Proposition 6.2. There exists an orthogonal basis {vT } of V λ in which the generators si act according to
formulas (6.5).

Remark 6.3. Since the weight α(Tλ) of the vector vT λ is the maximal weight in V λ with respect to the
lexicographic order, we may call α(Tλ) the highest weight of V λ and call the vector vT λ the highest vector of V λ.
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7. Comments and corollaries

The previous sections contain the construction of the first part of the representation theory of the symmetric
groups: the description of irreducible representations, branching of representations, expressions for the Coxeter
generators in representations. In particular, we have revealed the intrinsic connection between the combinatorics
of Young diagrams and tableaux and the Young graph on the one hand and the representation theory of the
symmetric groups on the other hand.

The further plan, which includes studying the relation to symmetric functions (characteristic map), formulas
for characters, the theory of induced representations, the Littlewood–Richardson rule, the relation to the repre-
sentation theory of GL(n) and Hecke algebras and to asymptotic theory, can also be realized with the help of
the same ideas, the main of which is an inductive approach to the series of symmetric groups.

From all these topics, in the next section we will only sketch the proof of the Murnaghan–Nakayama rule,
leaving the rest to another occasion.

In this section, we will give several simple corollaries from the results obtained in Secs. 1–6. First of all, we will
deduce corollaries from the branching theorem, which claims that the branching of irreducible representations
of the groups Sn is described by the Young graph.

Corollary 7.1. The multiplicity of an irreducible representation πµ of Sn in a representation πλ of Sn+k is
equal to the number of paths between the diagrams λ and µ (λ � n + k, µ � n); in particular, if µ �⊂ λ, it is
equal to 0, and in the general case it does not exceed k!, this estimate being sharp.

Proof. Only the last claim needs to be proved. The number of tableaux in the skew diagram λ/µ does not exceed
the number of different ways to add k new boxes successively to the diagram µ. If these k boxes can be added
to different rows and columns, the number of these ways equals k!. �

In particular, if k = 2, then we have only three different cases:
(1) the multiplicity of µ in λ is equal to 0, and the vertices µ and λ are not connected in the branching graph;
(2) the multiplicity is equal to 1, and the interval connecting µ and λ is the chain

µ—ν—λ;

(3) the multiplicity is equal to 2, and the interval between µ and λ is the square

µ
�

ν
�

� η �
λ.

In the case of the chain, the transposition sl+1 multiplies all vectors of the form

vT , T = . . . ↗ µ ↗ ν ↗ λ ↗ . . . ,

by a scalar (which is equal to ±1 in view of the relation s2
l+1 = 1). The action of the permutation sl+1 in the

case of the square was considered in the previous section.
Note that the Young graph is the so-called Hasse diagram of the distributive lattice of finite ideals of the

lattice Z+ + Z+, hence intervals in the Young graph have a standard description, and the generic interval is a
Boolean algebra. A priori this important fact is quite nonobvious, but eventually it proved to be a corollary of
the Coxeter relations. Taking it as an assumption, one can also derive the branching theory (see [30, 31]).

The next important conclusion is an abstract description of the Young–Jucys–Murphy generators based on
the previous results.

Define a mapping
p̃n : Sn → Sn−1

by the following operation of deleting the last symbol:

p̃n((. . . , n, . . .)(. . . ) . . . (. . . )) = ((. . . , �n, . . .)(. . . ) . . . (. . . )),

where the parentheses contain the cycle decomposition of a permutation g ∈ Sn and p̃n leaves all cycles except
the first one, which contains n, unchanged and delete n from the first cycle. The mapping p̃n enjoys the following
obvious properties:
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(1) p̃n(In) = In−1, where Ik is the identity in Sk;
(2) p̃n|Sn−1 = idSn−1 (Sn−1 ⊂ Sn);
(3) p̃n(g1hg2) = g1p̃n(h)g2, g1, g2 ∈ Sn−1, h ∈ Sn.

Note that conditions (1) and (2) follow from (3). Indeed, (3) implies

p̃n(gI) = gp̃n(I) = p̃n(Ig) = p̃n(I)g

for all g ∈ Sn−1, whence p̃n(I) = I. But then p̃n(g) = g for g ∈ Sn−1.
By pn denote the extension of the mapping p̃n by linearity to the group algebra C[Sn]:

pn : C[Sn] → C[Sn−1].

Thus pn is a projection of the algebra C[Sn] to the subalgebra C[Sn−1]. For n = 2, 3, such a projection is not
unique, but for n ≥ 4, condition (3) uniquely determines an operation p̃n : Sn → Sn−1. It is easy to see that
the existence of p̃n means the existence of an Sn−1-biinvariant partition of Sn into (n − 1)! sets of n elements.
Such a property of a pair of groups (G, H) is not satisfied often; however, there exists a generalization of this
construction to semisimple algebras (in particular, to group algebras) in the most general case.

Proposition 7.2.
p−1

n ({cI}) ∩ Z(n − 1, 1) = {aXn + bI}, a, b, c ∈ C.

In other words, the inverse image of scalars intersects the centralizer of Sn−1 in C[Sn] by the two-dimensional
subspace spanned by the identity and the Young–Jucys–Murphy element Xn. In particular, Xn is uniquely
determined (up to scalar) as an element of the intersection

p−1
n ({cI}) ∩ Z(n − 1, 1)

that is orthogonal to constants.

Proof. If pn(
∑

g∈Sn−1
cgg) = cI, then the element A =

∑

g∈Sn−1
cgg must be a linear combination of the form

A =
∑n

i=1 bi(i, n). Such an element commutes with Sn−1 if and only if

b1 = · · · = bn−1 = a, bn = b, i.e., A = aXn + bI. �

The projection pn allows us to define the inverse spectrum (projective limit) of the groups Sn regarded as
Sn−1-bimodules:

lim
←

(Sn, p̃n) = S;

the space S is no longer a group, but on this space there is a left and right actions of the group S∞ of finite
permutations, because the projection p̃n commutes with the left and right actions of Sn−1 for all n. In [20], this
object was called the space of virtual permutations; it is studied in detail in [21]. There is a generalization of
this construction to other inductive families of groups and algebras.

In conclusion we generalize the theorem on the centralizer Z(l, k) of C[Sn] in C[Sn+k].

Theorem 7.3 [10]. The centralizer

Z(l, k) ≡ C[Sn+k]C[Sn]

is generated by the center Z(n) of C[Sn] ⊂ C[Sn+k], the group Sn permuting the elements n + 1, . . . , n + k, and
the YJM-elements Xn+1, . . . , Xn+k.

The main case k = 1 is proved in Sec. 2. The general case can be proved by the same method.
Note that this method of proof is different from and simpler than that suggested in [4] and [10, 11]; namely,

it turns out to be useful to consider first the subalgebra 〈Z(n), Xn+1, . . . , Xn+k〉, as in Sec. 2.

Remark 7.4. The formulas that describe the action of the symmetric group in representations associated with
skew diagrams (i.e., with diagrams equal to the difference of two true Young diagrams one of which contains the
other) are similar to the formulas from Sec. 6.
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Indeed, let λ be a partition of l + k and µ be a partition of l with µ ⊂ λ. By V λ/µ denote the Z(l, k)-module

V λ/µ = HomSl (V
µ, V λ).

It is clear that this module has an orthonormalized Young basis indexed by all Young tableaux with the skew
diagram λ/µ (which is similar to the basis of the representation associated with an ordinary Young diagram).
In this basis, the generators

Xl+i , i = i, . . . , k,

of the algebra Z(l, k) act by multiplication by the content of the ith box, and the Coxeter generators of the
subgroup Sk ⊂ Z(l, k) act according to formulas (6.5).

We use Theorem 7.3 in the proof of the formula for characters in the next section.

8. Characters of the symmetric groups

In this section, we give a sketch of the proof of the Murnaghan–Nakayama rule for characters of the symmetric
groups. In contrast to the previous sections, we do not recall definitions of some well-known notions. The key
role in the proof is played by Proposition 8.3 based on Theorem 7.3.

Recall that a Young diagram γ is called a hook if γ = (a + 1, 1b) for some a, b ∈ Z+ . The number b is called
the height of the hook γ. Recall also that a skew diagram λ/µ is called a skew hook if it is connected and does
not have two boxes on the same diagonal. In other words, λ/µ is a skew hook if the contents of all boxes of λ/µ
form an interval (of cardinality |λ/µ|) in Z. The number of rows occupied by λ/µ minus 1 is called the height of
λ/µ and is denoted by 〈λ/µ〉. Put k = |λ/µ|. Let V λ/µ be the representation of Sk indexed by a skew diagram
λ/µ, and let χλ/µ be the corresponding character. Our aim is to prove the following well-known theorem.

Theorem 8.1. There is the following formula:

χλ/µ((12 . . . k)) =
{

(−1)〈λ/µ〉 if λ/µ is a skew hook,

0 otherwise.
(8.1)

Now suppose that ρ is a partition of k. Consider the following permutation from the conjugacy class corre-
sponding to ρ:

(12 . . . ρ1)(ρ1 + 1 . . . ρ1 + ρ2)(. . . ) . . . .

It is clear that repeatedly applying the theorem to the action of this permutation in the Young basis, we obtain
the following classical rule.

Murnaghan–Nakayama rule. Let ρ be a partition of k. The value χ
λ/µ
ρ of the character χλ/µ on a permutation

of cycle type ρ equals

χλ/µ
ρ =

∑

S

(−1)〈S〉
,

where the sum is over all sequences S,

µ = λ0 ⊂ λ1 ⊂ λ2 · · · = λ ,

such that λi/λi−1 is a skew hook with ρi boxes and

〈S〉 =
∑

i

〈λi/λi−1〉.

It is well known and can easily be proved (see, for example, [23, Chap. 1, Ex. 3.11]) that this rule is equivalent
to all other descriptions of the characters, such as the relation

pρ =
∑

λ

χλ
ρ sλ

for symmetric functions (see [23]) or the determinantal formula (see [23, 18]). Note that the theorem we are
going to prove is obviously a special case of the Murnaghan–Nakayama rule.

The same proof of the following proposition was also given in [15].
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Proposition 8.2. Formula (8.1) is true for µ = ∅.

Proof. It is easy to see (for example, by induction; see also the proof of Theorem 2.1) that

X2X3 . . .Xk = sum of all k-cycles in Sk . (8.2)

The eigenvalue of (8.2) on any vector of the Young basis in V λ equals

(−1)bb! (k − b − 1)!

if λ is a hook of height b, and vanishes otherwise. Clearly, the number of one-cycle permutations in Sk equals
(k − 1)!, and

dimλ =
(

k − 1
b

)

if λ is a hook of height b. Taking the trace of (8.2) in V λ proves the proposition. �

Proposition 8.3. For any vector v from the Young basis of V λ/µ,

C[Sk] · v = V λ/µ.

Proof. The space V λ/µ is an irreducible module over the degenerate affine Hecke algebra H(k). The vector v is
a common eigenvector for all Xi. Thus, by the commutation relations in H(k), the space

C[Sk] · v

is H(k)-invariant and hence equals V λ/µ. �

Proposition 8.4. If λ/µ is not connected, then

χλ/µ((12 . . . k)) = 0 .

Proof. Assume that λ/µ = ν1 ∪ ν2, where ν1 and ν2 are two skew Young diagrams that have no common edge.
Let a = |ν1|, b = |ν2|. Consider the subspace of V λ/µ spanned by all tableaux of the form λ/µ that have the
numbers 1, 2, . . . , a in the diagram ν1 and the numbers a + 1, . . . , k in the diagram ν2. Obviously, the numbers
of such tableaux equal precisely the number of tableaux of the form ν1 and ν2, respectively. Consider the action
of the subgroup Sa × Sb of Sk on this subspace. It follows from the Young formulas that it is isomorphic, as an
Sa × Sb-module, to

V ν1 ⊗ V ν2 .

By Proposition 8.3, we have an epimorphism

IndSk

Sa×Sb
V ν1 ⊗ V ν2 −→ V λ/µ. (8.3)

The dimensions of both sides of (8.3) equal

(

k

a

)

dim ν1 dim ν2 .

Hence (8.3) is an isomorphism.
In the natural basis of the induced representation, the matrix of the operator corresponding to the permutation

(12 . . . k) (as well as any other permutation that is not conjugate to any element of Sa × Sb) has only zeros on
the diagonal. This proves the proposition. �
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Proposition 8.5. If λ/µ has two boxes on the same diagonal, then

χλ/µ((12 . . . k)) = 0 .

Proof. Assume that there are two such boxes. Then there is a diagram η such that

µ ⊂ η ⊂ λ

and η/µ is a 2 × 2 square
η/µ = � .

That is, V λ/µ contains an S4-submodule V �. By Proposition 8.3, we have an epimorphism

IndSk
S4

V � −→ V λ/µ . (8.4)

By the branching rule and Frobenius reciprocity, the left-hand side of (8.4) contains only irreducible Sk-modules
V δ with � ⊂ δ. In particular, δ cannot be a hook, so that

χδ((12 . . . k)) = 0

by Proposition 8.2. This proves the proposition. �
In fact, we have proved that under the assumptions of Proposition 8.5,

HomSk(V γ , V λ/µ) = 0

for all hook diagrams γ.

Proposition 8.6. Assume that λ/µ is a skew hook. Then for any hook γ = (a + 1, 1b),

HomSk (V γ , V λ/µ) =
{

C, b = 〈λ/µ〉,
0 otherwise.

Proof. Since translations of a skew diagram obviously preserve the corresponding Sk-module, we may assume
that λ and µ are minimal, that is,

λ1 > µ1, λ′
1 > µ′

1 .

Let us show that if b < 〈λ/µ〉, then
HomSk (V γ , V λ/µ) = 0 .

Indeed, the module V γ contains a nonzero Sk−b-invariant vector, and V λ/µ contains no such vectors, because
there are no such vectors even in V λ (this follows from the branching rule). The case b > 〈λ/µ〉 is similar.

Now assume that b = 〈λ/µ〉. Consider the space

HomSk (V γ , V λ) .

It is easy to see, for example, from the following picture (and the Young formulas)

that this space is the irreducible S|µ|-module V µ. Therefore

HomSk×S|µ|(V
γ ⊗ V µ, V λ) = C ,

whence
HomSk (V γ , V λ/µ) = C. �

The theorem obviously follows from the propositions proved above.
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